[ | E-mail | Share ]
Contact: Todd Datz
tdatz@hsph.harvard.edu
617-432-8413
Harvard School of Public Health
Technology will allow better surveillance of bacterial populations, understanding of vaccine effectiveness
Boston, MA A new study led by researchers from Harvard School of Public Health (HSPH) and the Wellcome Trust Sanger Institute in the UK has, for the first time, used genome sequencing technology to track the changes in a bacterial population following the introduction of a vaccine. The study follows how the population of pneumococcal bacteria changed following the introduction of the 'Prevnar' conjugate polysaccharide vaccine, which substantially reduced rates of pneumococcal disease across the U.S. The work demonstrates that the technology could be used in the future to monitor the effectiveness of vaccination or antibiotic use against different species of bacterial pathogens, and for characterizing new and emerging threats.
The study appears online May 5, 2013 in Nature Genetics.
"This gives an unprecedented insight into the bacteria living and transmitting among us," said co-author William Hanage, associate professor of epidemiology at HSPH. "We can characterize these bugs to an almost unimaginable degree of detail, and in so doing understand better what helps them survive even in the presence of an effective vaccine."
Pneumococcal disease is caused by a type of bacteria called Streptococcus pneumoniae, which is present in many people's noses and throats and is spread by coughing, sneezing, or other contact with respiratory secretions. The circumstances that cause it to become pathogenic are not fully understood. Rates of pneumococcal diseasean infection that can lead to pneumonia, meningitis, and other illnessesdropped in young children following the introduction of a vaccine in 2000. However, strains of the bacteria that are not targeted by the vaccine rapidly increased and drug resistance appears to be on the rise.
The research, led by HSPH co-senior authors Hanage; Marc Lipsitch, professor of epidemiology; and Stephen Bentley, senior scientist at the Wellcome Trust Sanger Institute, aimed to better understand the bacterial population's response to vaccination. Whole genome sequencingwhich reveals the DNA code for each bacterial strain to an unprecedented level of detailwas used to study a sample of 616 pneumococci collected in Massachusetts communities from 2001 to 2007.
This study confirmed that the parts of the bacterial population targeted by the vaccine have almost disappeared, and, surprisingly, revealed that they have been replaced by pre-existing rare types of bacteria. The genetic composition of the new population is very similar to the original one, except for a few genes that were directly affected by the vaccine. This small genetic alteration appears to be responsible for the large reduction in the rates of pneumococcal disease.
"The widespread use of whole genome sequencing will allow better surveillance of bacterial populations even those that are genetically diverse and improve understanding of their evolution," said Lipsitch. "In this study, we were even able to see how quickly these bacteria transmit between different regions within Massachusetts and identify genes associated with bacteria in children of different ages."
"In the future, we will be able to monitor evolutionary changes in real-time. If we can more quickly and precisely trace the emergence of disease-causing bacteria, we may be able to better target interventions to limit the burden of disease," said Bentley.
###
Support for the study was provided by the National Institutes of Health, the Wellcome Trust, and the AXA Foundation.
"Population Genomics of Post-Vaccine Changes in Pneumococcal Epidemiology," Nicholas J. Croucher, Jonathan A. Finkelstein, Stephen I. Pelton, Patrick K. Mitchell, Grace M. Lee, Julian Parkhill, Stephen D. Bentley, William P. Hanage, Marc Lipsitch Nature Genetics, online May 5, 2013
Harvard School of Public Health brings together dedicated experts from many disciplines to educate new generations of global health leaders and produce powerful ideas that improve the lives and health of people everywhere. As a community of leading scientists, educators, and students, we work together to take innovative ideas from the laboratory and the classroom to people's livesnot only making scientific breakthroughs, but also working to change individual behaviors, public policies, and health care practices. Each year, more than 400 faculty members at HSPH teach 1,000-plus full-time students from around the world and train thousands more through online and executive education courses. Founded in 1913 as the Harvard-MIT School of Health Officers, the School is recognized as America's first professional training program in public health.
The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Todd Datz
tdatz@hsph.harvard.edu
617-432-8413
Harvard School of Public Health
Technology will allow better surveillance of bacterial populations, understanding of vaccine effectiveness
Boston, MA A new study led by researchers from Harvard School of Public Health (HSPH) and the Wellcome Trust Sanger Institute in the UK has, for the first time, used genome sequencing technology to track the changes in a bacterial population following the introduction of a vaccine. The study follows how the population of pneumococcal bacteria changed following the introduction of the 'Prevnar' conjugate polysaccharide vaccine, which substantially reduced rates of pneumococcal disease across the U.S. The work demonstrates that the technology could be used in the future to monitor the effectiveness of vaccination or antibiotic use against different species of bacterial pathogens, and for characterizing new and emerging threats.
The study appears online May 5, 2013 in Nature Genetics.
"This gives an unprecedented insight into the bacteria living and transmitting among us," said co-author William Hanage, associate professor of epidemiology at HSPH. "We can characterize these bugs to an almost unimaginable degree of detail, and in so doing understand better what helps them survive even in the presence of an effective vaccine."
Pneumococcal disease is caused by a type of bacteria called Streptococcus pneumoniae, which is present in many people's noses and throats and is spread by coughing, sneezing, or other contact with respiratory secretions. The circumstances that cause it to become pathogenic are not fully understood. Rates of pneumococcal diseasean infection that can lead to pneumonia, meningitis, and other illnessesdropped in young children following the introduction of a vaccine in 2000. However, strains of the bacteria that are not targeted by the vaccine rapidly increased and drug resistance appears to be on the rise.
The research, led by HSPH co-senior authors Hanage; Marc Lipsitch, professor of epidemiology; and Stephen Bentley, senior scientist at the Wellcome Trust Sanger Institute, aimed to better understand the bacterial population's response to vaccination. Whole genome sequencingwhich reveals the DNA code for each bacterial strain to an unprecedented level of detailwas used to study a sample of 616 pneumococci collected in Massachusetts communities from 2001 to 2007.
This study confirmed that the parts of the bacterial population targeted by the vaccine have almost disappeared, and, surprisingly, revealed that they have been replaced by pre-existing rare types of bacteria. The genetic composition of the new population is very similar to the original one, except for a few genes that were directly affected by the vaccine. This small genetic alteration appears to be responsible for the large reduction in the rates of pneumococcal disease.
"The widespread use of whole genome sequencing will allow better surveillance of bacterial populations even those that are genetically diverse and improve understanding of their evolution," said Lipsitch. "In this study, we were even able to see how quickly these bacteria transmit between different regions within Massachusetts and identify genes associated with bacteria in children of different ages."
"In the future, we will be able to monitor evolutionary changes in real-time. If we can more quickly and precisely trace the emergence of disease-causing bacteria, we may be able to better target interventions to limit the burden of disease," said Bentley.
###
Support for the study was provided by the National Institutes of Health, the Wellcome Trust, and the AXA Foundation.
"Population Genomics of Post-Vaccine Changes in Pneumococcal Epidemiology," Nicholas J. Croucher, Jonathan A. Finkelstein, Stephen I. Pelton, Patrick K. Mitchell, Grace M. Lee, Julian Parkhill, Stephen D. Bentley, William P. Hanage, Marc Lipsitch Nature Genetics, online May 5, 2013
Harvard School of Public Health brings together dedicated experts from many disciplines to educate new generations of global health leaders and produce powerful ideas that improve the lives and health of people everywhere. As a community of leading scientists, educators, and students, we work together to take innovative ideas from the laboratory and the classroom to people's livesnot only making scientific breakthroughs, but also working to change individual behaviors, public policies, and health care practices. Each year, more than 400 faculty members at HSPH teach 1,000-plus full-time students from around the world and train thousands more through online and executive education courses. Founded in 1913 as the Harvard-MIT School of Health Officers, the School is recognized as America's first professional training program in public health.
The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2013-05/hsop-gsp050113.php
mary j blige gcb patricia heaton arsenic and old lace dionne warwick leslie varez ward
No comments:
Post a Comment